Câu 6.51 trang 205 sbt đại số 10 nâng cao

\[\begin{array}{l}{\sin ^2}\left[ {\alpha + \beta } \right] = {\left[ {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right]^2}\\ = {\sin ^2}\alpha {\cos ^2}\beta + {\sin ^2}\beta {\cos ^2}\alpha + 2\sin \alpha \cos \alpha sin\beta cos\beta \\ = {\sin ^2}\alpha \left[ {1 - {{\sin }^2}\beta } \right] + {\sin ^2}\beta \left[ {1 - {{\sin }^2}\alpha } \right] + 2\sin \alpha \cos \alpha \sin \beta \cos \beta \\ = {\sin ^2}\alpha + {\sin ^2}\beta - 2{\sin ^2}\alpha {\sin ^2}\beta + 2\sin \alpha \cos \alpha \sin \beta \cos \beta \\ = {\sin ^2}\alpha + {\sin ^2}\beta + 2\sin \alpha \sin \beta \left[ {\cos \alpha \cos \beta - \sin \alpha \sin \beta } \right]\\ = {\sin ^2}\alpha + {\sin ^2}\beta + 2\sin \alpha \sin \beta \cos \left[ {\alpha + \beta } \right]\end{array}\]
Lựa chọn câu để xem lời giải nhanh hơn
  • LG a
  • LG b
  • LG c

Chứng minh rằng với mọi \[\alpha ,\beta \], ta có:

LG a

\[{\sin ^2}\left[ {\alpha + \beta } \right] = {\sin ^2}\alpha + {\sin ^2}\beta + 2\sin \alpha \sin \beta \cos \left[ {\alpha + \beta } \right]\]

Lời giải chi tiết:

\[\begin{array}{l}{\sin ^2}\left[ {\alpha + \beta } \right] = {\left[ {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right]^2}\\ = {\sin ^2}\alpha {\cos ^2}\beta + {\sin ^2}\beta {\cos ^2}\alpha + 2\sin \alpha \cos \alpha sin\beta cos\beta \\ = {\sin ^2}\alpha \left[ {1 - {{\sin }^2}\beta } \right] + {\sin ^2}\beta \left[ {1 - {{\sin }^2}\alpha } \right] + 2\sin \alpha \cos \alpha \sin \beta \cos \beta \\ = {\sin ^2}\alpha + {\sin ^2}\beta - 2{\sin ^2}\alpha {\sin ^2}\beta + 2\sin \alpha \cos \alpha \sin \beta \cos \beta \\ = {\sin ^2}\alpha + {\sin ^2}\beta + 2\sin \alpha \sin \beta \left[ {\cos \alpha \cos \beta - \sin \alpha \sin \beta } \right]\\ = {\sin ^2}\alpha + {\sin ^2}\beta + 2\sin \alpha \sin \beta \cos \left[ {\alpha + \beta } \right]\end{array}\]

LG b

Biết \[\cos \alpha + \cos \beta = m;\sin \alpha + \sin \beta = n,\]hãy tính \[\cos \left[ {\alpha - \beta } \right]\] theo m, n

Lời giải chi tiết:

\[\begin{array}{l}{m^2} + {n^2} = {\left[ {\cos \alpha + \cos \beta } \right]^2} + {\left[ {\sin \alpha + \sin \beta } \right]^2}\\ = {\cos ^2}\alpha + {\sin ^2}\alpha + {\cos ^2}\beta + {\sin ^2}\beta + 2\left[ {\cos \alpha \cos \beta + \sin \alpha \sin \beta } \right]\\ = 2 + 2\cos \left[ {\alpha - \beta } \right]\end{array}\]

Do đó \[\cos \left[ {\alpha - \beta } \right] = \dfrac{{{m^2} + {n^2} - 2}}{2}.\]

LG c

Biết \[{\cos ^2}\alpha + {\cos ^2}\beta = p.\] Hãy tính \[\cos \left[ {\alpha - \beta } \right]\cos \left[ {\alpha + \beta } \right]\] theo p.

Lời giải chi tiết:

\[\begin{array}{l}\cos \left[ {\alpha - \beta } \right]\cos \left[ {\alpha + \beta } \right]\\ = \dfrac{1}{2}\left[ {\cos 2\alpha + \cos 2\beta } \right]\\ = \dfrac{1}{2}\left[ {2{{\cos }^2}\alpha - 1 + 2{{\cos }^2}\beta - 1} \right]\\ = {\cos ^2}\alpha + {\cos ^2}\beta - 1 = p - 1\end{array}\]

Video liên quan

Chủ Đề