Where is Neisseria gonorrhoeae found in the body

  • World Health Organization. WHO Guidelines for the Treatment of Neisseria gonorrhoeae (WHO, 2016).

  • Carmona-Gutierrez, D., Kainz, K. & Madeo, F. Sexually transmitted infections: old foes on the rise. Microb. Cell 3, 361–362 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Unemo, M. et al. The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization. J. Antimicrob. Chemother. 71, 3096–3108 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newman, L. et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLOS ONE 10, e0143304 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Lee, J. S., Choi, H. Y., Lee, J. E., Lee, S. H. & Oum, B. S. Gonococcal keratoconjunctivitis in adults. Eye 16, 646–649 (2002).

    CAS  PubMed  Google Scholar 

  • Noble, R. C., Cooper, R. M. & Miller, B. R. Pharyngeal colonisation by Neisseria gonorrhoeae and Neisseria meningitidis in black and white patients attending a venereal disease clinic. Br. J. Vener. Dis. 55, 14–19 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Danby, C. S. et al. Patterns of extragenital chlamydia and gonorrhea in women and men who have sex with men reporting a history of receptive anal intercourse. Sex. Transm. Dis. 43, 105–109 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Little, J. W. Gonorrhea: update. Oral Surg., Oral Med., Oral Pathol., Oral Radiol., Endodont. 101, 137–143 (2006).

    Google Scholar 

  • Sandstrom, I. Etiology and diagnosis of neonatal conjunctivitis. Acta Paediatr. Scand. 76, 221–227 (1987).

    CAS  PubMed  Google Scholar 

  • Masi, A. T. & Eisenstein, B. I. Disseminated gonococcal infection (DGI) and gonococcal arthritis (GCA): II. Clinical manifestations, diagnosis, complications, treatment, and prevention. Semin. Arthritis Rheum. 10, 173–197 (1981).

    CAS  PubMed  Google Scholar 

  • Hoffman, O. & Weber, R. J. Pathophysiology and treatment of bacterial meningitis. Ther. Adv. Neurol. Disord. 2, 1–7 (2009).

    PubMed  PubMed Central  Google Scholar 

  • Marri, P. R. et al. Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLOS ONE 5, e11835 (2010).

    PubMed  PubMed Central  Google Scholar 

  • Liu, G., Tang, C. M. & Exley, R. M. Non-pathogenic Neisseria: members of an abundant, multi-habitat, diverse genus. Microbiology 161, 1297–1312 (2015).

    CAS  PubMed  Google Scholar 

  • Maiden, M. C. & Harrison, O. B. Population and functional genomics of Neisseria revealed with gene-by-gene approaches. J. Clin. Microbiol. 54, 1949–1955 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bratcher, H. B., Corton, C., Jolley, K. A., Parkhill, J. & Maiden, M. C. A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes. BMC Genomics 15, 1138 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Joseph, B. et al. Virulence evolution of the human pathogen Neisseria meningitidis by recombination in the core and accessory genome. PLOS ONE 6, e18441 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maiden, M. C. Population genomics: diversity and virulence in the Neisseria. Curr. Opin. Microbiol. 11, 467–471 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards, J. L. & Apicella, M. A. The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin. Microbiol. Rev. 17, 965–981 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sparling, P. F. Biology of Neisseria gonorrhoeae. 3rd edn (McGraw-Hill, 1999).

    Google Scholar 

  • Walker, C. K. & Sweet, R. L. Gonorrhea infection in women: prevalence, effects, screening, and management. Int. J. Women' Health 3, 197–206 (2011).

    Google Scholar 

  • Jordan, S. J., Schwebke, J. R., Aaron, K. J., Van Der Pol, B. & Hook, E. W. 3rd. Meatal swabs contain less cellular material and are associated with a decrease in Gram stain smear quality compared to urethral swabs in men. J. Clin. Microbiol. 55, 2249–2254 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muzny, C. A. et al. Sexually transmitted infection risk among women is not fully explained by partner numbers. South Med. J. 110, 161–167 (2017).

    PubMed  Google Scholar 

  • Grimley, D. M. et al. Sexually transmitted infections among urban shelter clients. Sex. Transm. Dis. 33, 666–669 (2006).

    PubMed  Google Scholar 

  • Geisler, W. M., Yu, S. & Hook, E. W. 3rd. Chlamydial and gonococcal infection in men without polymorphonuclear leukocytes on gram stain: implications for diagnostic approach and management. Sex. Transm. Dis. 32, 630–634 (2005).

    PubMed  Google Scholar 

  • Xiong, M. et al. Analysis of the sex ratio of reported gonorrhoea incidence in Shenzhen, China. BMJ Open 6, e009629 (2016). This epidemiological study of 1,106 male and 1,420 female participants in Shenzhen, China, shows that undiagnosed, unreported gonorrhoea infections were common in both men and women and that the reported incidence sex ratio was overestimated by a factor of 7.9.

    PubMed  PubMed Central  Google Scholar 

  • Hook, E. W. 3rd. Gender differences in risk for sexually transmitted diseases. Am. J. Med. Sci. 343, 10–11 (2012).

    PubMed  Google Scholar 

  • Hedges, S. R. et al. Limited local and systemic antibody responses to Neisseria gonorrhoeae during uncomplicated genital infections. Infect. Immun. 67, 3937–3946 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fichorova, R. N., Desai, P. J., Gibson, F. C. 3rd & Genco, C. A. Distinct proinflammatory host responses to Neisseria gonorrhoeae infection in immortalized human cervical and vaginal epithelial cells. Infect. Immun. 69, 5840–5848 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papp, J. R., Schachter, J., Gaydos, C. A. & Van Der Pol, B. Recommendations for the laboratory-based detection of Chlamydia trachomatis and Neisseria gonorrhoeae — 2014. MMWR Morb. Mortal. Wkly Rep. 63, 1–19 (2014).

    Google Scholar 

  • James-Holmquest, A. N., Swanson, J., Buchanan, T. M., Wende, R. D. & Williams, R. P. Differential attachment by piliated and nonpiliated Neisseria gonorrhoeae to human sperm. Infect. Immun. 9, 897–902 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey, H. A. et al. Gonococcal lipooligosaccharide is a ligand for the asialoglycoprotein receptor on human sperm. Mol. Microbiol. 36, 1059–1070 (2000). This study shows that gonococcal LOS binds to asialoglycoprotein receptor 1 (ASGPR1) on human sperm, possibly contributing to male-to-female transmission.

    CAS  PubMed  Google Scholar 

  • Cohen, M. S. et al. Human experimentation with Neisseria gonorrhoeae: rationale, methods, and implications for the biology of infection and vaccine development. J. Infect. Dis. 169, 532–537 (1994).

    CAS  PubMed  Google Scholar 

  • Ketterer, M. R. et al. Desialylation of Neisseria gonorrhoeae Lipooligosaccharide by Cervicovaginal Microbiome Sialidases: The Potential for Enhancing Infectivity in Men. J. Infect. Dis. 214, 1621–1628 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higashi, D. L. et al. Dynamics of Neisseria gonorrhoeae attachment: microcolony development, cortical plaque formation, and cytoprotection. Infect. Immun. 75, 4743–4753 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Craig, L., Pique, M. E. & Tainer, J. A. Type IV pilus structure and bacterial pathogenicity. Nat. Rev. Microbiol. 2, 363–378 (2004).

    CAS  PubMed  Google Scholar 

  • Obergfell, K. P. & Seifert, H. S. The pilin N-terminal domain maintains Neisseria gonorrhoeae transformation competence during pilus phase variation. PLOS Genet. 12, e1006069 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Berry, J.-L. & Pelicic, V. Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol. Rev. 39, 134–154 (2015).

    CAS  PubMed  Google Scholar 

  • Cahoon, L. A. & Seifert, H. S. Transcription of a cis-acting, noncoding, small RNA is required for pilin antigenic variation in Neisseria gonorrhoeae. PLOS Pathog. 9, e1003074 (2013). This study demonstrates that transcription of a small, cis -acting, non-coding RNA initiates within the guanine quartet (G4) coding sequence enables the formation of the G4 structure required for pilin antigenic variation.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dietrich, M. et al. Activation of NF-kappaB by Neisseria gonorrhoeae is associated with microcolony formation and type IV pilus retraction. Cell. Microbiol. 13, 1168–1182 (2011).

    CAS  PubMed  Google Scholar 

  • Swanson, J., Barrera, O., Sola, J. & Boslego, J. Expression of outer membrane protein II by gonococci in experimental gonorrhea. J. Exp. Med. 168, 2121–2129 (1988).

    CAS  PubMed  Google Scholar 

  • Jerse, A. E. et al. Multiple gonococcal opacity proteins are expressed during experimental urethral infection in the male. J. Exp. Med. 179, 911–920 (1994). This study shows that when Opa-less variants of N. gonorrhoeae strain FA1090 were inoculated into human male volunteers, a majority of bacteria cultured from the infected subjects were Opa-positive and expressed a variety of Opa variants.

    CAS  PubMed  Google Scholar 

  • Virji, M., Makepeace, K., Ferguson, D. J. & Watt, S. M. Carcinoembryonic antigens (CD66) on epithelial cells and neutrophils are receptors for Opa proteins of pathogenic neisseriae. Mol. Microbiol. 22, 941–950 (1996).

    CAS  PubMed  Google Scholar 

  • Simms, A. N. & Jerse, A. E. In vivo selection for Neisseria gonorrhoeae opacity protein expression in the absence of human carcinoembryonic antigen cell adhesion molecules. Infect. Immun. 74, 2965–2974 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambden, P. R., Heckels, J. E., James, L. T. & Watt, P. J. Variations in surface protein composition associated with virulence properties in opacity types of Neisseria gonorrhoeae. J. Gen. Microbiol. 114, 305–312 (1979).

    CAS  PubMed  Google Scholar 

  • Stern, A., Brown, M., Nickel, P. & Meyer, T. F. Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation. Cell 47, 61–71 (1986).

    CAS  PubMed  Google Scholar 

  • Swanson, J. et al. Gonococcal pilin variants in experimental gonorrhea. J. Exp. Med. 165, 1344–1357 (1987).

    CAS  PubMed  Google Scholar 

  • James, J. F. & Swanson, J. Studies on gonococcus infection. XIII. Occurrence of color/opacity colonial variants in clinical cultures. Infect. Immun. 19, 332–340 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seifert, H. S., Wright, C. J., Jerse, A. E., Cohen, M. S. & Cannon, J. G. Multiple gonococcal pilin antigenic variants are produced during experimental human infections. J. Clin. Invest. 93, 2744–2749 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, M. T., Byerly, L., Apicella, M. A. & Seifert, H. S. Seminal plasma promotes Neisseria gonorrhoeae aggregation and biofilm formation. J. Bacteriol. 198, 2228–2235 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steichen, C. T., Cho, C., Shao, J. Q. & Apicella, M. A. The Neisseria gonorrhoeae biofilm matrix contains DNA, and an endogenous nuclease controls its incorporation. Infect. Immun. 79, 1504–1511 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greiner, L. L. et al. Biofilm Formation by Neisseria gonorrhoeae. Infect. Immun. 73, 1964–1970 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steichen, C. T., Shao, J. Q., Ketterer, M. R. & Apicella, M. A. Gonococcal cervicitis: a role for biofilm in pathogenesis. J. Infect. Dis. 198, 1856–1861 (2008).

    PubMed  PubMed Central  Google Scholar 

  • Wetzler, L. M., Blake, M. S., Barry, K. & Gotschlich, E. C. Gonococcal porin vaccine evaluation: comparison of Por proteosomes, liposomes, and blebs isolated from rmp deletion mutants. J. Infect. Dis. 166, 551–555 (1992).

    CAS  PubMed  Google Scholar 

  • Song, W., Ma, L., Chen, R. & Stein, D. C. Role of lipooligosaccharide in Opa-independent invasion of Neisseria gonorrhoeae into human epithelial cells. J. Exp. Med. 191, 949–960 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Vliet, S. J. et al. Variation of Neisseria gonorrhoeae lipooligosaccharide directs dendritic cell-induced T helper responses. PLOS Pathog. 5, e1000625 (2009).

    PubMed  PubMed Central  Google Scholar 

  • Wetzler, L. M., Barry, K., Blake, M. S. & Gotschlich, E. C. Gonococcal lipooligosaccharide sialylation prevents complement-dependent killing by immune sera. Infect. Immun. 60, 39–43 (1992). This study shows that sialylation of gonococcal LOS prevents opsonophagocytosis by immune sera, which led to the later confirmation that sialylation of LOS prevents complement activation and killing.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kellogg, D. S. et al. Neisseria gonorrhoeae. I. Virulence genetically linked to clonial variation. J. Bacteriol. 85, 1274–1279 (1963).

    PubMed  PubMed Central  Google Scholar 

  • Spence, J. M., Wright, L. & Clark, V. L. Laboratory maintenance of Neisseria gonorrhoeae. Curr. Protoc. Microbiol., Unit 4A (2008). This study compares selectively passaged, piliated N. gonorrhoeae capable of infecting human volunteers with non-selectively passaged, non-piliated clonal variants that became non-infectious, enabling researchers to realize that infectivity can be phenotypically followed by observing piliated and non-piliated colony morphology.

  • Platt, D. J. Carbon dioxide requirement of Neisseria gonorrhoeae growing on a solid medium. J. Clin. Microbiol. 4, 129–132 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  • St Amant, D. C., Valentin-Bon, I. E. & Jerse, A. E. Inhibition of Neisseria gonorrhoeae by Lactobacillus species that are commonly isolated from the female genital tract. Infect. Immun. 70, 7169–7171 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spurbeck, R. R. & Arvidson, C. G. Inhibition of Neisseria gonorrhoeae epithelial cell interactions by vaginal Lactobacillus species. Infect. Immun. 76, 3124–3130 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spurbeck, R. R. & Arvidson, C. G. Lactobacillus jensenii surface-associated proteins inhibit Neisseria gonorrhoeae adherence to epithelial cells. Infect. Immun. 78, 3103–3111 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cassat, J. E. & Skaar, E. P. Iron in infection and immunity. Cell Host Microbe 13, 509–519 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doherty, C. P. Host-pathogen interactions: the role of iron. J. Nutr. 137, 1341–1344 (2007).

    CAS  PubMed  Google Scholar 

  • Bonnah, R. A. & Schryvers, A. B. Preparation and characterization of Neisseria meningitidis mutants deficient in production of the human lactoferrin-binding proteins LbpA and LbpB. J. Bacteriol. 180, 3080–3090 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noinaj, N., Buchanan, S. K. & Cornelissen, C. N. The transferrin-iron import system from pathogenic Neisseria species. Mol. Microbiol. 86, 246–257 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans, R. W. & Oakhill, J. S. Transferrin-mediated iron acquisition by pathogenic Neisseria. Biochem. Soc. Trans. 30, 705–707 (2002).

    CAS  PubMed  Google Scholar 

  • Kehl-Fie, T. E. & Skaar, E. P. Nutritional immunity beyond iron: a role for manganese and zinc. Curr. Opin. Chem. Biol. 14, 218–224 (2010).

    CAS  PubMed  Google Scholar 

  • Ovcinnikov, N. M. & Delektorskij, V. V. Electron microscope studies of gonococci in the urethral secretions of patients with gonorrhoea. Br. J. Vener. Dis. 47, 419–439 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farzadegan, H. & Roth, I. L. Scanning electron microscopy and freeze-etching of gonorrhoeal urethral exudate. Br. J. Vener. Dis. 51, 83–91 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans, B. A. Ultrastructural study of cervical gonorrhea. J. Infect. Dis. 136, 248–255 (1977).

    CAS  PubMed  Google Scholar 

  • King, G., James, J. F. & Swanson, J. Studies on gonococcus infection. XI. Comparison of in vivo and vitro association of Neisseria gonorrhoeae with human neutrophils. J. Infect. Dis. 137, 38–43 (1978).

    CAS  PubMed  Google Scholar 

  • Apicella, M. A. et al. The pathogenesis of gonococcal urethritis in men: confocal and immunoelectron microscopic analysis of urethral exudates from men infected with Neisseria gonorrhoeae. J. Infect. Dis. 173, 636–646 (1996).

    CAS  PubMed  Google Scholar 

  • Criss, A. K. & Seifert, H. S. A bacterial siren song: intimate interactions between Neisseria and neutrophils. Nat. Rev. Microbiol. 10, 178–190 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas, C. E., Hagman, K. E., Levin, J. C., Stein, D. C. & Shafer, W. M. Importance of lipooligosaccharide structure in determining gonococcal resistance to hydrophobic antimicrobial agents resulting from the mtr efflux system. Mol. Microbiol. 16, 1001–1009 (1995).

    CAS  PubMed  Google Scholar 

  • Zalucki, Y. M., Dhulipala, V. & Shafer, W. M. Dueling regulatory properties of a transcriptional activator (MtrA) and repressor (MtrR) that control efflux pump gene expression in Neisseria gonorrhoeae. mBio 3, e00446-12 (2012). This study compares the binding affinities and regulatory competition between MtrC–MtrD–MtrE efflux pump operon activator MtrA and repressor MtrR, building on previous data characterizing this important antimicrobial resistance pump and its transcriptional regulation.

    PubMed  PubMed Central  Google Scholar 

  • Thaler, C. J., Vanderpuye, O. A., McIntyre, J. A. & Faulk, W. P. Lactoferrin binding molecules in human seminal plasma. Biol. Reprod. 43, 712–717 (1990).

    CAS  PubMed  Google Scholar 

  • Mercante, A. D. et al. MpeR regulates the mtr efflux locus in Neisseria gonorrhoeae and modulates antimicrobial resistance by an iron-responsive mechanism. Antimicrob. Agents Chemother. 56, 1491–1501 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laskos, L., Ryan, C. S., Fyfe, J. A. & Davies, J. K. The RpoH-mediated stress response in Neisseria gonorrhoeae is regulated at the level of activity. J. Bacteriol. 186, 8443–8452 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Householder, T. C., Belli, W. A., Lissenden, S., Cole, J. A. & Clark, V. L. cis- and trans- acting elements involved in the regulation of aniA, the gene encoding the major anaerobically induced outer membrane protein in Nesseria gonorrhoeae. J. Bacteriol. 181, 5411–5551 (1999).

    Google Scholar 

  • Mellies, J., Rudel, T. & Meyer, T. F. Transcriptional regulation of pilC2 in Neisseria gonorrhoeae: response to oxygen availability and evidence for growth-phase regulation in Escherichia coli. Mol. Gen. Genet. 255, 285–293 (1997).

    CAS  PubMed  Google Scholar 

  • Whitehead, R. N. et al. The small FNR regulon of Neisseria gonorrhoeae: comparison with the larger Escherichia coli FNR regulon and interaction with the NarQ-NarP regulon. BMC Genomics 8, 35 (2007).

    PubMed  PubMed Central  Google Scholar 

  • Berish, S. A., Subbarao, S., Chen, C. Y., Trees, D. L. & Morse, S. A. Identification and cloning of a fur homolog from Neisseria gonorrhoeae. Infect. Immun. 61, 4599–4606 (1993). This study identifies and initially characterizes the major iron-regulatory protein Fur in N. gonorrhoeae.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isabella, V. M. & Clark, V. L. Deep sequencing-based analysis of the anaerobic stimulon in Neisseria gonorrhoeae. BMC Genomics 12, 51 (2011). This study identifies a wide array of genes that are differentially expressed under aerobic and anaerobic conditions in microaerophile N. gonorrhoeae , highlighting the large overlap among genes that are differentially regulated in response to low oxygen, changes in iron levels and the presence of reactive oxygen species.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ducey, T. F., Carson, M. B., Joshua, O. & Stintzi, A. P. & Dyer, D. W. Identification of the iron-responsive genes of Neisseria gonorrhoaea by microarray analysis in defined medium. J. Bacteriol. 187, 4865–4874 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stohl, E. A., Criss, A. K. & Seifert, H. S. The transcriptome response of Neisseria gonorrhoeae to hydrogen peroxide reveals genes with previously uncharacterized roles in oxidative damage protection. Mol. Microbiol. 58, 520–532 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makino, S., van Putten, J. P. & Meyer, T. F. Phase variation of the opacity outer membrane protein controls invasion by Neisseria gonorrhoeae into human epithelial cells. EMBO J. 10, 1307–1315 (1991). This study shows a positive correlation between the expression of Opa proteins and the binding and invasion of N. gonorrhoeae into Chang conjunctiva human epithelial cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder, L. A., Butcher, S. A. & Saunders, N. J. Comparative whole-genome analyses reveal over 100 putative phase-variable genes in the pathogenic Neisseria spp. Microbiology 147, 2321–2332 (2001).

    CAS  PubMed  Google Scholar 

  • Jordan, P. W., Snyder, L. A. & Saunders, N. J. Strain-specific differences in Neisseria gonorrhoeae associated with the phase variable gene repertoire. BMC Microbiol. 5, 21 (2005).

    PubMed  PubMed Central  Google Scholar 

  • Srikhanta, Y. N. et al. Phasevarions mediate random switching of gene expression in pathogenic Neisseria. PLOS Pathog. 5, e1000400 (2009). This study characterizes phase-variable DNA methyltransferase activity in N. gonorrhoeae , showing that it affects the expression of virulence-related genes, antimicrobial resistance, human epithelial cervical cell interactions and biofilm formation.

    PubMed  PubMed Central  Google Scholar 

  • Gawthorne, J. A., Beatson, S. A., Srikhanta, Y. N., Fox, K. L. & Jennings, M. P. Origin of the diversity in DNA recognition domains in phasevarion associated modA genes of pathogenic Neisseria and Haemophilus influenzae. PLOS ONE 7, e32337 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jen, F. E., Seib, K. L. & Jennings, M. P. Phasevarions mediate epigenetic regulation of antimicrobial susceptibility in Neisseria meningitidis. Antimicrob. Agents Chemother. 58, 4219–4221 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Post, D. M. B. et al. Identification and characterization of AckA-dependent protein acetylation in Neisseria gonorrhoeae. PLOS ONE 12, e0179621 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Seib, K. L., Jen, F. E., Scott, A. L., Tan, A. & Jennings, M. P. Phase variation of DNA methyltransferases and the regulation of virulence and immune evasion in the pathogenic Neisseria. Pathog. Dis. 75, ftx080 (2017).

    Google Scholar 

  • Gibson, F. P., Leach, D. R. & Lloyd, R. G. Identification of sbcD mutations as cosuppressors of recBC that allow propagation of DNA palindromes in Escherichia coli K-12. J. Bacteriol. 174, 1222–1228 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson, L. A., Pan, J. C., Day, M. W. & Dyer, D. W. Control of RNA stability by NrrF, an iron-regulated small RNA in Neisseria gonorrhoeae. J. Bacteriol. 195, 5166–5173 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ngampasutadol, J. et al. Human factor H interacts selectively with Neisseria gonorrhoeae and results in species-specific complement evasion. J. Immunol. 180, 3426–3435 (2008). This study demonstrates how sialylated LOS binds human factor H and prevents complement-mediated killing of N. gonorrhoeae.

    CAS  PubMed  Google Scholar 

  • Densen, P. Interaction of complement with Neisseria meningitidis and Neisseria gonorrhoeae. [Review]. Clin. Microbiol. Rev. 2 (Suppl.), S11–S17 (1989).

    PubMed  PubMed Central  Google Scholar 

  • Petersen, B. H., Graham, J. A. & Brooks, G. F. Human deficiency of the eighth component of complement. The requirement of C8 for serum Neisseria gonorrhoeae bactericidal activity. J. Clin. Invest. 57, 283–290 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards, J. L., Brown, E. J., Ault, K. A. & Apicella, M. A. The role of complement receptor 3 (CR3) in Neisseria gonorrhoeae infection of human cervical epithelia. Cell. Microbiol. 3, 611–622 (2001).

    CAS  PubMed  Google Scholar 

  • Edwards, J. L. & Apicella, M. A. The role of lipooligosaccharide in Neisseria gonorrhoeae pathogenesis of cervical epithelia: lipid A serves as a C3 acceptor molecule. Cell. Microbiol. 4, 585–598 (2002).

    CAS  PubMed  Google Scholar 

  • Edwards, J. L. et al. A co-operative interaction between Neisseria gonorrhoeae and complement receptor 3 mediates infection of primary cervical epithelial cells. Cell. Microbiol. 4, 571–584 (2002).

    CAS  PubMed  Google Scholar 

  • Schweinle, J. E. et al. Interaction of Neisseria gonorrhoeae with classical complement components, C1-inhibitor, and a monoclonal antibody directed against the Neisserial H.8 antigen. J. Clin. Invest. 83, 397–403 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ram, S. et al. A novel sialic acid binding site on factor H mediates serum resistance of sialylated Neisseria gonorrhoeae. J. Exp. Med. 187, 743–752 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ram, S. et al. Binding of complement factor H to loop 5 of porin protein 1A: a molecular mechanism of serum resistance of nonsialylated Neisseria gonorrhoeae. J. Exp. Med. 188, 671–680 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ram, S. et al. Binding of C4b-binding protein to porin: a molecular mechanism of serum resistance of Neisseria gonorrhoeae. J. Exp. Med. 193, 281–295 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gill, D. B. & Atkinson, J. P. CD46 in Neisseria pathogenesis. Trends Mol. Med. 10, 459–465 (2004).

    CAS  PubMed  Google Scholar 

  • Feinen, B. & Russell, M. W. Contrasting roles of IL-22 and IL-17 in murine genital tract infection by Neisseria gonorrhoeae. Front. Immunol. 3, 11 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Edwards, J. L. & Butler, E. K. The pathobiology of Neisseria gonorrhoeae lower female genital tract infection. Front. Microbiol. 2, 102 (2011).

    PubMed  PubMed Central  Google Scholar 

  • Melly, M. A., McGee, Z. A. & Rosenthal, R. S. Ability of monomeric peptidoglycan fragments from Neisseria gonorrhoeae to damage human fallopian-tube mucosa. J. Infect. Dis. 149, 378–386 (1984). This study demonstrates the ability of different N. gonorrhoeae peptidoglycan monomers to damage human fallopian tube mucosal cells in tissue culture.

    CAS  PubMed  Google Scholar 

  • Mavrogiorgos, N., Mekasha, S., Yang, Y., Kelliher, M. A. & Ingalls, R. R. Activation of NOD receptors by Neisseria gonorrhoeae modulates the innate immune response. Innate Immun. 20, 377–389 (2014).

    PubMed  Google Scholar 

  • Fisette, P. L., Ram, S., Andersen, J. M., Guo, W. & Ingalls, R. R. The Lip lipoprotein from Neisseria gonorrhoeae stimulates cytokine release and NF-kappaB activation in epithelial cells in a Toll-like receptor 2-dependent manner. J. Biol. Chem. 278, 46252–46260 (2003).

    CAS  PubMed  Google Scholar 

  • Massari, P. et al. Cutting edge: Immune stimulation by neisserial porins is toll-like receptor 2 and MyD88 dependent. J. Immunol. 168, 1533–1537 (2002).

    CAS  PubMed  Google Scholar 

  • Chateau, A. & Seifert, H. S. Neisseria gonorrhoeae survives within and modulates apoptosis and inflammatory cytokine production of human macrophages. Cell. Microbiol. 18, 546–560 (2016).

    CAS  PubMed  Google Scholar 

  • Gaudet, R. G. et al. Cytosolic detection of the bacterial metabolite HBP activates TIFA-dependent innate immunity. Science 348, 1251–1255 (2015).

    CAS  PubMed  Google Scholar 

  • Ortiz, M. C. et al. Neisseria gonorrhoeae modulates immunity by polarizing human macrophages to a M2 profile. PLOS ONE 10, e0130713 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Sadarangani, M., Pollard, A. J. & Gray-Owen, S. D. Opa proteins and CEACAMs: pathways of immune engagement for pathogenic Neisseria. FEMS Microbiol. Rev. 35, 498–514 (2011).

    CAS  PubMed  Google Scholar 

  • Schmitter, T., Agerer, F., Peterson, L., Munzner, P. & Hauck, C. R. Granulocyte CEACAM3 is a phagocytic receptor of the innate immune system that mediates recognition and elimination of human-specific pathogens. J. Exp. Med. 199, 35–46 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarantis, H. & Gray-Owen, S. D. The specific innate immune receptor CEACAM3 triggers neutrophil bactericidal activities via a Syk kinase-dependent pathway. Cell. Microbiol. 9, 2167–2180 (2007).

    CAS  PubMed  Google Scholar 

  • Packiam, M., Veit, S. J., Anderson, D. J., Ingalls, R. R. & Jerse, A. E. Mouse strain-dependent differences in susceptibility to Neisseria gonorrhoeae infection and induction of innate immune responses. Infect. Immun. 78, 433–440 (2010).

    CAS  PubMed  Google Scholar 

  • Dilworth, J. A., Hendley, J. O. & Mandell, G. L. Attachment and ingestion of gonococci human neutrophils. Infect. Immun. 11, 512–516 (1975). This early study shows adherence and ingestion of two different gonococci strains by polymorphonuclear leukocyte neutrophils (PMNs).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Criss, A. K. & Seifert, H. S. Neisseria gonorrhoeae suppresses the oxidative burst of human polymorphonuclear leukocytes. Cell. Microbiol. 10, 2257–2270 (2008). This study demonstrates how different types of Opa-expressing or Opa-less N. gonorrhoeae grown under different conditions differ in their ability to elicit a PMN oxidative burst, as well as the ability of some strains to inhibit the PMN oxidative burst.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gunderson, C. W. & Seifert, H. S. Neisseria gonorrhoeae elicits extracellular traps in primary neutrophil culture while suppressing the oxidative burst. mBio 6, e02452-14 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Criss, A. K., Katz, B. Z. & Seifert, H. S. Resistance of Neisseria gonorrhoeae to non-oxidative killing by adherent human polymorphonuclear leucocytes. Cell. Microbiol. 11, 1074–1087 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, M. B. & Criss, A. K. Resistance of Neisseria gonorrhoeae to neutrophils. Front. Microbiol. 2, 77 (2011).

    PubMed  PubMed Central  Google Scholar 

  • Soler-Garcia, A. A. & Jerse, A. E. A. Neisseria gonorrhoeae catalase mutant is more sensitive to hydrogen peroxide and paraquat, an inducer of toxic oxygen radicals. Microb. Pathog. 37, 55–63 (2004).

    CAS  PubMed  Google Scholar 

  • Gunesekere, I. C. et al. Ecf, an alternative sigma factor from Neisseria gonorrhoeae, controls expression of msrAB, which encodes methionine sulfoxide reductase. J. Bacteriol. 188, 3463–3469 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pilch, B. & Mann, M. Large-scale and high-confidence proteomic analysis of human seminal plasma. Genome Biol. 7, R40 (2006).

    PubMed  PubMed Central  Google Scholar 

  • Schmidt, K. A. et al. Experimental gonococcal urethritis and reinfection with homologous gonococci in male volunteers. Sex. Transm. Dis. 28, 555–564 (2001).

    CAS  PubMed  Google Scholar 

  • Cahoon, L. A. & Seifert, H. S. Focusing homologous recombination: pilin antigenic variation in the pathogenic Neisseria. Mol. Microbiol. 81, 1136–1143 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandrell, R. E., Griffiss, J. M. & Macher, B. A. Lipooligosaccharides (LOS) of Neisseria gonorrhoeae and Neisseria meningitidis have components that are immunochemically similar to precursors of human blood group antigens. Carbohydrate sequence specificity of the mouse monoclonal antibodies that recognize crossreacting antigens on LOS and human erythrocytes [published erratum appears in J. Exp Med 1988 Oct 1;168, 1517]. J. Exp. Med. 168, 107–126 (1988).

    CAS  PubMed  Google Scholar 

  • Mandrell, R. E. Further antigenic similarities of Neisseria gonorrhoeae lipooligosaccharides and human glycosphingolipids. Infect. Immun. 60, 3017–3020 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gulati, S., McQuillen, D. P., Mandrell, R. E., Jani, D. B. & Rice, P. A. Immunogenicity of Neisseria gonorrhoeae lipooligosaccharide epitope 2C7, widely expressed in vivo with no immunochemical similarity to human glycosphingolipids. J. Infect. Dis. 174, 1223–1237 (1996).

    CAS  PubMed  Google Scholar 

  • Liu, Y., Islam, E., Jarvis, G., Gray-Owen, S. & Russell, M. Neisseria gonorrhoeae selectively suppresses the development of Th2 and Th2 cells, and enhances Th27 cell responses, through TGF-α- dependent mechanisms. Mucosal Immunol. 5, 320–331 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Liu, W. & Russell, M. W. Suppression of host adaptive immune responses by Neisseria gonorrhoeae: role of interleukin 10 and type 1 regulatory T cells. Mucosal Immunol. 7, 165–176 (2014).

    CAS  PubMed  Google Scholar 

  • Zhu, W. et al. Neisseria gonorrhoeae suppresses dendritic cell-induced, antigen-dependent CD4 T cell proliferation. PLOS ONE 7, e41260 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Feinen, B. & Russell, M. W. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host. Front. Microbiol. 2, 52 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jerse, A. E., Bash, M. C. & Russell, M. W. Vaccines against gonorrhea: current status and future challenges. Vaccine 32, 1579–1587 (2014).

    CAS  PubMed  Google Scholar 

  • Petousis-Harris, H. et al. Effectiveness of a group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: a retrospective case-control study. Lancet 390, 1603–1610 (2017).

    CAS  PubMed  Google Scholar 

  • Zhao, S. et al. Genetics of chromosomally mediated intermediate resistance to ceftriaxone and cefixime in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 53, 3744–3751 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagman, K. E. et al. Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology 141, 611–622 (1995).

    CAS  PubMed  Google Scholar 

  • Zhao, S., Tobiason, D. M., Hu, M., Seifert, H. S. & Nicholas, R. A. The penC mutation conferring antibiotic resistance in Neisseria gonorrhoeae arises from a mutation in the PilQ secretin that interferes with multimer stability. Mol. Microbiol. 57, 1238–1251 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Unemo, M. & Shafer, W. M. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin. Microbiol. Rev. 27, 587–613 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jerse, A. E. et al. A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect. Immun. 71, 5576–5582 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Unemo, M. & Shafer, W. M. Antibiotic resistance in Neisseria gonorrhoeae: origin, evolution, and lessons learned for the future. Ann. NY Acad. Sci. 1230, E19–E28 (2011).

    PubMed  Google Scholar 

  • Hook, M. W., Schafer, W., Deal, C., Kirkcaldy, R. D. & Iskander, J. CDC Grand Rounds: the growing threat of multidrug-resistant gonorrhea. MMWR Morb. Mortal. Wkly Rep. 62, 103–106 (2013).

    PubMed Central  Google Scholar 

  • Unemo, M. & Nicholas, R. A. Emergence of multidrug-resistant, extensively drug-resistant and untreatable gonorrhea. Future Microbiol. 7, 1401–1422 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aas, F. E., Lovold, C. & Koomey, M. An inhibitor of DNA binding and uptake events dictates the proficiency of genetic transformation in Neisseria gonorrhoeae: mechanism of action and links to Type IV pilus expression. Mol. Microbiol. 46, 1441–1450 (2002).

    CAS  PubMed  Google Scholar 

  • Hamilton, H. L. & Dillard, J. P. Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination. Mol. Microbiol. 59, 376–385 (2006).

    CAS  PubMed  Google Scholar 

  • Bowler, L. D., Zhang, Q. Y., Riou, J. Y. & Spratt, B. G. Interspecies recombination between the penA genes of Neisseria meningitidis and commensal Neisseria species during the emergence of penicillin resistance in N. meningitidis: natural events and laboratory simulation. J. Bacteriol. 176, 333–337 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng, L. K. & Martin, I. E. The laboratory diagnosis of Neisseria gonorrhoeae. Can. J. Infect. Dis. Med. Microbiol. 16, 15–25 (2005).

    PubMed  PubMed Central  Google Scholar 

  • De Silva, D. et al. Whole-genome sequencing to determine transmission of Neisseria gonorrhoeae: an observational study. Lancet Infect. Dis. 16, 1295–1303 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison, O. B. et al. Genomic analysis of urogenital and rectal Neisseria meningitidis isolates reveals encapsulated hyperinvasive meningococci and coincident multidrug-resistant gonococci. Sex. Transm. Infect. 93, 445–451 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Johnson, L. F. & Lewis, D. A. The effect of genital tract infections on HIV-1 shedding in the genital tract: a systematic review and meta-analysis. Sex. Transm. Dis. 35, 946–959 (2008).

    PubMed  Google Scholar 

  • Kalichman, S. C., Pellowski, J. & Turner, C. Prevalence of sexually transmitted co-infections in people living with HIV/AIDS: systematic review with implications for using HIV treatments for prevention. Sex. Transm. Infect. 87, 183–190 (2011).

    PubMed  PubMed Central  Google Scholar 

  • Jerse, A. E. et al. Estradiol-Treated female mice as surrogate hosts for Neisseria gonorrhoeae genital tract infections. Front. Microbiol. 2, 107 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zarantonelli, M. L. et al. Transgenic mice expressing human transferrin as a model for meningococcal infection. Infect. Immun. 75, 5609–5614 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, A., Zhang, Z., Zhang, N., Tsark, W. & Shively, J. E. Generation of human CEACAM1 transgenic mice and binding of Neisseria Opa protein to their neutrophils. PLOS ONE 5, e10067 (2010).

    PubMed  PubMed Central  Google Scholar 

  • Li, G. et al. Establishment of a human CEACAM1 transgenic mouse model for the study of gonococcal infections. J. Microbiol. Methods 87, 350–354 (2011). This study presents and characterizes a transgenic mouse model for gonorrhoea infection wherein the mouse has been made to express a humanized CEACAM receptor molecule important for adherence and colonization, enabling N. gonorrhoeae to intravaginally colonize the mouse.

    CAS  PubMed  Google Scholar 

  • Winther-Larsen, H. C. et al. in 13th International Pathogenic Neisseria Conference (eds Caugant, D. A. & Wedege, E.) 37 (Oslo, 2002)

    Google Scholar 

  • Pearce, W. A. & Buchanan, T. M. Attachment role of gonococcal pili. Optimum conditions and quantitation of adherence of isolated pili to human cells in vitro. J. Clin. Invest. 61, 931–943 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaparakis, M. et al. Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell. Microbiol. 12, 372–385 (2010).

    CAS  PubMed  Google Scholar 

  • Zhou, X. et al. Hexa-acylated lipid A is required for host inflammatory response to Neisseria gonorrhoeae in experimental gonorrhea. Infect. Immun. 82, 184–192 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Singleton, T. E., Massari, P. & Wetzler, L. M. Neisserial porin-induced dendritic cell activation is MyD88 and TLR2 dependent. J. Immunol. 174, 3545–3550 (2005).

    CAS  PubMed  Google Scholar 

  • Liu, X. et al. Gonococcal lipooligosaccharide suppresses HIV infection in human primary macrophages through induction of innate immunity. J. Infect. Dis. 194, 751–759 (2006).

    CAS  PubMed  Google Scholar 

  • Remmele, C. W. et al. Transcriptional landscape and essential genes of Neisseria gonorrhoeae. Nucleic Acids Res. 42, 10579–10595 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, E. H. & Shafer, W. M. The farAB-encoded efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids. Mol. Microbiol. 33, 839–845 (1999).

    CAS  PubMed  Google Scholar 

  • Lee, E. H., Rouquette-Loughlin, C., Folster, J. P. & Shafer, W. M. FarR regulates the farAB-encoded efflux pump of Neisseria gonorrhoeae via an MtrR regulatory mechanism. J. Bacteriol. 185, 7145–7152 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warner, D. M., Folster, J. P., Shafer, W. M. & Jerse, A. E. Regulation of the MtrC-MtrD-MtrE efflux-pump system modulates the in vivo fitness of Neisseria gonorrhoeae. J. Infect. Dis. 196, 1804–1812 (2007).

    CAS  PubMed  Google Scholar 

  • Seib, K. L. et al. Characterization of the OxyR regulon of Neisseria gonorrhoeae. Mol. Microbiol. 63, 54–68 (2007).

    CAS  PubMed  Google Scholar 

  • Overton, T. W. et al. Coordinated regulation of the Neisseria gonorrhoeae-truncated denitrification pathway by the nitric oxide-sensitive repressor, NsrR, and nitrite-insensitive NarQ-NarP. J. Biol. Chem. 281, 33115–33126 (2006).

    CAS  PubMed  Google Scholar 

  • Wu, H. J. et al. PerR controls Mn-dependent resistance to oxidative stress in Neisseria gonorrhoeae. Mol. Microbiol. 60, 401–416 (2006).

    CAS  PubMed  Google Scholar 

  • Gunesekere, I. C. et al. Comparison of the RpoH-dependent regulon and general stress response in Neisseria gonorrhoeae. J. Bacteriol. 188, 4769–4776 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gangaiah, D. et al. Both MisR (CpxR) and MisS (CpxA) are required for Neisseria gonorrhoeae infection in a murine model of lower genital tract infection. Infect. Immun. 85, e00307-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Yu, C., McClure, R., Nudel, K., Daou, N. & Genco, C. A. Characterization of the Neisseria gonorrhoeae iron and Fur regulatory network. J. Bacteriol. 198, 2180–2191 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng, H. J., McEwan, A. G., Apicella, M. A. & Jennings, M. P. OxyR acts as a repressor of catalase expression in Neisseria gonorrhoeae. Infect. Immun. 71, 550–556 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J. J., Zhou, D., Mandrell, R. E. & Griffiss, J. M. Effect of exogenous sialylation of the lipooligosaccharide of Neisseria gonorrhoeae on opsonophagocytosis. Infect. Immun. 60, 4439–4442 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blom, A. M. & Ram, S. Contribution of interactions between complement inhibitor C4b-binding protein and pathogens to their ability to establish infection with particular emphasis on Neisseria gonorrhoeae. Vaccine 26 (Suppl. 8), I49–I55 (2008).

    CAS  PubMed  Google Scholar 

  • Jarvis, G. A. Analysis of C3 deposition and degradation on Neisseria meningitidis and Neisseria gonorrhoeae. Infect. Immun. 62, 1755–1760 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, Q. et al. Association of Neisseria gonorrhoeae Opa(CEA) with dendritic cells suppresses their ability to elicit an HIV-1-specific T cell memory response. PLOS ONE 8, e56705 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ison, C. A., Deal, C. & Unemo, M. Current and future treatment options for gonorrhoea. Sex. Transm. Infect. 89 (Suppl. 4), iv52–iv56 (2013).

    PubMed  Google Scholar 

  • How does Neisseria gonorrhoeae enter the body?

    You get an infection when the bacteria that causes gonorrhea (N. gonorrhoeae) enters your body through sexual fluids, like semen or vaginal fluid – often through unprotected sex.

    Where does Neisseria gonorrhoeae come from?

    N. gonorrhoeae is transmitted through vaginal, oral, or anal sex; nonsexual transmission is unlikely in adult infection. It can also be transmitted to the newborn during passage through the birth canal if the mother has untreated genitourinary infection.

    Can Neisseria gonorrhoeae be found in urine?

    Urine is one of the specimen types suitable for nucleic acid tests for diagnosing N gonorrhoeae infections in males and females. Leak-proof containers should be provided to patients for the collection of urine specimens.

    Where does Neisseria gonorrhoeae colonize?

    N. gonorrhoeae mainly colonizes the genital mucosa, but it can also colonize the ocular, nasopharyngeal, and anal mucosa5-7. Pathology largely results from damage that is caused by the activation of innate immune responses at the sites of colonization as N. gonorrhoeae does not express potent exotoxins.