Giải bài tập giải tích 12 ứng dụng tích phân năm 2024

Tài liệu gồm 229 trang tuyển chọn và phân dạng các bài tập trắc nghiệm có đáp án và lời giải chi tiết các chủ đề: ứng dụng của tích phân để tính diện tích, ứng dụng của tích phân để tính thể tích, ứng dụng của tích phân để giải quyết các bài toán thực tế và bài toán liên môn; giúp học sinh học tốt chương trình Giải tích 12 chương 3 và ôn thi THPT Quốc gia môn Toán.

Mục lục tài liệu bài tập trắc nghiệm ứng dụng của tích phân có đáp án và lời giải: Vấn đề 1. Ứng dụng của tích phân để tính diện tích. + Dạng toán 1: Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành và hai đường thẳng x = a, x = b (a < b). + Dạng toán 2: Diện tích hình phẳng giới hạn bởi các đường y = f(x), y = g(x), x = a, x = b. + Dạng toán 3: Diện tích hình phẳng giới hạn bởi các đường y = f(x), y = g(x). + Dạng toán 4: Tính diện tích hình phẳng giới hạn bởi nhiều đường cong (nhiều hơn hai đường cong). + Dạng toán 5: Diện tích hình phẳng giới hạn bởi các đường x = g(y), x = h(y), y = c, y = d. + Dạng toán 6: Ứng dụng diện tích có đồ thị hàm đạo hàm. + Dạng toán 7: Bài toán thực tế sử dụng diện tích hình phẳng. [ads] Vấn đề 2. Ứng dụng của tích phân để tính thể tích. + Dạng toán 1: Tính thể tích vật thể tròn xoay sinh bởi miền (D) giới hạn bởi y = f(x), y = 0 và x = a, x = b khi quay quanh trục Ox. + Dạng toán 2: Tính thể tích vật thể tròn xoay khi cho hình phẳng giới hạn bởi: y = f(x) và y = g(x) quay quanh trục Ox. + Dạng toán 3: Tính thể tích vật thể tròn xoay khi cho hình phẳng giới hạn bởi: x = g(y), x = h(y) quay xung quanh trục Oy. + Dạng toán 4: Thể tích tính theo mặt cắt S(x). + Dạng toán 5: Bài toán thực tế và ứng dụng thể tích. Vấn đề 3. Ứng dụng của tích phân để giải quyết các bài toán thực tế và bài toán liên môn.

  • Nguyên Hàm – Tích Phân

Ghi chú: Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về: Facebook: TOÁN MATH Email: [email protected]

Ví dụ 1:

Tính diện tích tích hình phẳng giới hạn bởi các đường cong \(y = {x^3},\) trục hoành và hai đường thẳng \(x = - 1,x = 2.\)

Lời giải:

Phương trình hoành độ giao điểm của đường cong \(y = {x^3}\) và trục hoành:

Diện tích hình phẳng cần tính:

\(S = \int\limits_{ - 1}^0 {\left| {{x^3}} \right|dx + \int\limits_0^2 {\left| {{x^3}} \right|dx} = \int\limits_{ - 1}^0 {\left( { - {x^3}} \right)} dx + \int\limits_0^2 {{x^3}dx} }\) \(= \left. { - \frac{{{x^4}}}{4}} \right|_{ - 1}^0 + \left. {\frac{{{x^4}}}{4}} \right|_0^2 = \frac{{17}}{4}\)

Ví dụ 2:

Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \left( {e + 1} \right)x\) và \(y=(1+e^x)x.\)

Lời giải:

Phương trình hoành độ giao điểm của hai đường cong là:\(\left( {e + 1} \right)x = \left( {1 + {e^x}} \right)x \Leftrightarrow \left[ {\begin{array}{*{20}{c}} {x = 0}\\ {{e^x} = e} \end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}} {x = 0}\\ {x = 1} \end{array}} \right.\)

Nhận xét, với \(x \in \left[ {0;1} \right]\) thì hiệu số \(\left( {1 + {e^x}} \right)x - \left( {e + 1} \right)x = x\left( {{e^x} - e} \right) > 0.\)

Khi đó, diện tích hình phẳng cần tìm là \(S = \int\limits_0^1 {\left| {\left( {1 + {e^x}} \right)x - \left( {e + 1} \right)x} \right|} dx = \int\limits_0^1 {\left| {x\left( {{e^x} - e} \right)} \right|dx = \int\limits_0^1 {x\left( {{e^x} - e} \right)} dx}\)

Đặt \(\left\{ {\begin{array}{*{20}{c}} {u = x}\\ {dv = \left( {e - {e^x}} \right)dx} \end{array} \Rightarrow \left\{ {\begin{array}{*{20}{c}} {du = dx}\\ {v = ex - {e^x}} \end{array}} \right.} \right.\)

\({ \Rightarrow S = x\left( {ex - {e^x}} \right)\left| {_0^1} \right. - \int\limits_0^1 {\left( {ex - {e^x}} \right)dx} }\) \(= \left( { - \frac{{e{x^2}}}{2} + {e^x}} \right)\left| {\begin{array}{*{20}{c}} 1\\ 0 \end{array}} \right. = \frac{{e - 2}}{2}.\)

Ví dụ 3:

Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng \(x=0\) và \(x=3\) , có thiết diện bị cắt bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\left( {0 \le x \le 3} \right)\) là một hình chữ nhật có hai kích thước bằng \(x\) và \(2\sqrt {9 - {x^2}}.\)

Lời giải:

Diện tích của hình chữ nhật có hai cạnh là \(x;2\sqrt {9 - {x^2}}\) là \(2x\sqrt {9 - {x^2}}\)

Khi đó, thể tích của vật thể được xác định bằng công thức \(V = \int\limits_0^3 {2x\sqrt {9 - {x^2}} dx}\)

Đặt \(t = \sqrt {9 - {x^2}} \Leftrightarrow {t^2} = 9 - {x^2} \Leftrightarrow xdx = - tdt\) và \(\left\{ {\begin{array}{*{20}{c}} {x = 0 \Rightarrow t = 3}\\ {x = 3 \Rightarrow t = 0} \end{array}} \right.\)

Suy ra \(V = - 2\int\limits_3^0 {{t^2}dt} = \frac{{2{t^3}}}{3}\left| {\begin{array}{*{20}{c}} 3\\ 0 \end{array}} \right. = 18.\)

Ví dụ 4:

Tính thể tích khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm số \(y = 2x - {x^2}\) và \(y = x\) quay quanh trục Ox.

Lời giải:

Phương trình hoành độ giao điểm của đồ thị hàm số \(y = 2x - {x^2}\) và đường thẳng \(y=x\) là \(2x - {x^2} = x \Leftrightarrow {x^2} - x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}} {x = 0}\\ {x = 1} \end{array}} \right.\)

Khi đó, thể tích khối tròn xoay cần tìm là \(V = \pi \int\limits_0^1 {\left| {{{\left( {2x - {x^2}} \right)}^2} - {x^2}} \right|dx} = \pi \int\limits_0^1 {\left| {{x^4} - 4{x^3} + 3{x^2}} \right|dx}\)

\(\Rightarrow V = \left| {\pi \int\limits_0^1 {\left( {{x^4} - 4{x^3} + 3{x^2}} \right)dx} } \right| = \pi \left| {\left( {\frac{{{x^5}}}{5} - {x^4} + {x^3}} \right)\left| {\begin{array}{*{20}{c}} 1\\ 0 \end{array}} \right.} \right| = \frac{\pi }{5}.\)