Why does cognitive psychology consider the computer to be good analogy of the human brain?

My concern is with the computer as a metaphor for explaining perception and action. A representative sample of arguments for and against the paradigm are presented and evaluated. The conclusion is that the idea of computation is productive for achieving a functionalist description of how we perceive and act. This level of description can contribute to our understanding independently of description achieved at the levels of neurophysiology and phenomenology. Some of the perceived limitations in the computational method rest on the assumption that the symbolic level must be discrete and abstract. In fact, worthwhile explanations within the information processing framework utilize continuous, modality-specific processes and representations as explanatory devices. One suggestion for a movement from the discrete to the continuous mode is advised to bring computational theories in line with the psychological phenomena they describe. Various alternatives to the computational framework are considered and found to be inadequate substitutes. An example of research is used to demonstrate the value of the continuous mode and the computational level of explanation.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Ackley, D. H., Hinton, G. E., &Sejnowski, T. J. (1985) A learning algorithm for Boltzmann machines.Cognitive Science,9, 147–169.

    Article  Google Scholar 

  • Allport, A. (1984). Alternatives to the computational view of mind. The baby or the bathwater? A commentary on Kolers and Smythe.Journal of Verbal Learning & Verbal Behavior,23, 315–324.

    Article  Google Scholar 

  • Bieri, P. (1985, January) What is the mind-body problem? Lecture presented at the Center for Interdisciplinary Research, University of Bielefeld, Federal Republic of Germany.

    Google Scholar 

  • Blumstein, S. E., &Cooper, W. (1974) Hemispheric processing of intonation contours.Cortex,10, 146–158.

    PubMed  Google Scholar 

  • Broadbent, D. E. (1958).Perception and communication. New York: Pergamon Press.

    Book  Google Scholar 

  • Broadbent, D. E. (1971)Decision and stress. New York: Academic Press.

    Google Scholar 

  • Broadbent, D. E. (1985) A question of levels: Comment on McClelland and Rumelhart.Journal of Experimental Psychology: General,114, 189–192.

    Article  Google Scholar 

  • Carello, C., Turvey, M. T., Kugler, P. N., &Shaw, R. E. (1984). Inadequacies of the computer metaphor. In M. S. Gazzaniga (Ed).Handbook of cognitive neuroscience (pp 229–248) New York: Plenum Press.

    Google Scholar 

  • Chapuis, A. E., &Droz, E. (1958)Automata Historical and technological study. Neuchatel, Switzerland Editions du Gnffo.

    Google Scholar 

  • Cheng, P. W. (1985) Categorization and response competition. Two nonautonomic factors.Psychological Review,92, 585–586.

    Article  Google Scholar 

  • Cherry, E. C. (1953) Some experiments on the recognition of speech, with one and with two ears.Journal of the Acoustical Society of America,25, 975–979.

    Article  Google Scholar 

  • Church, R. M. (1983) The influence of computers on psychological research A case study.Behavior Research Methods & Instrumentation,15, 117–126.

    Google Scholar 

  • Churchland, P. M. (1984)Matter and consciousness A contemporary introduction to the philosophy of mind. Cambridge, MA: MIT Press.

    Google Scholar 

  • Cohen, M. M. (1984)Processing of visual and auditory information in speech perception Unpublished doctoral dissertation, University of California, Santa Cruz.

    Google Scholar 

  • Cohen, M. M., &Massaro, D. W. (1976) Real-time speech synthesis.Behavior Research Methods & Instrumentation,8, 189–196.

    Google Scholar 

  • Dretskf, F. I. (1981)Knowledge and the flow of information. Cambridge, MA: MIT Press.

    Google Scholar 

  • Dretske, F. I.(1985)Explaining behavior (Report No 52) Bielefeld, Federal Republic of Germany: University of Bielefeld, Center for Interdisciplinary Research.

    Google Scholar 

  • Dreyfus, H. L. (1979)What computers can’t der The limits of artificial intelligence. New York: Harper Colophon.

    Google Scholar 

  • Dudley, H., &Tarnoczy, T. H. (1950) The speaking machine of Wolfgang von Kempelen.Journal of the Acoustical Society of America,22, 151–166.

    Article  Google Scholar 

  • Edwards, P. N. (1984)Formalized warfare Origins of cybernetic psychology. Unpublished dissertation prospectus, University of California, Santa Cruz.

    Google Scholar 

  • Evans, C. (1979).The micro millennium. New York: Viking.

    Google Scholar 

  • Feldman, J. A. (1985) Connectionist models and their applications Introduction.Cognitive Science,9, 1–2.

    Google Scholar 

  • Flanagan, J. L. (1972). The synthesis of speech.Scientific American,226(2), 48–58.

    Article  Google Scholar 

  • Freides, D. (1977). Dodichotic listening procedures measure lateralization of information processing or retrieval strategy?.Perception á Psychophysics,21, 259–263.

    Google Scholar 

  • Centner, D., &Grudin, J. (1985) The evolution of mental metaphors in psychology A 90-year retrospective.American Psychologist,40, 181–192.

    Article  Google Scholar 

  • Gibson, J. J. (1966)The senses considered as perceptual systems. Boston: Houghton Mifflin.

    Google Scholar 

  • Gibson, J. J. (1979).The ecological approach to visual perception. Boston: Houghton Mifflin.

    Google Scholar 

  • Gielen, S. C., Schmidt, R. A., &van den Heuvel, P. J. M (1983). On the nature of intersensory facilitation of reaction time.Perception & Psychophysics,34, 161–168.

    Google Scholar 

  • Goguen, J. A. (1969). The logic of inexact concepts.Synthese,19, 325–373.

    Article  Google Scholar 

  • Heuer, H. (1985). Some points of contact between models of central capacity and factor-analytic models.Acta Psychologica,60, 135–155.

    Article  Google Scholar 

  • Hinton, G. E., &Anderson, J. A. (1981).Parallel models of associative memory. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Horton, K. D. (1985). The role of semantic information in reading spatially transformed text.Cognitive Psychology,17, 66–88.

    Article  PubMed  Google Scholar 

  • Hull, C. L. (1943).Principles of behavior. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Hyman, R. (1953). Stimulus information as a determinant of reaction time.Journal of Experimental Psychology,45, 188–196.

    Article  PubMed  Google Scholar 

  • Kahneman, D. (1973).Attention and effort. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Kantowitz, B. H. (1985). Channels and stages in human information processing: A limited analysis of theory and methodology.Journal of Mathematical Psychology,29, 135–174.

    Article  Google Scholar 

  • Kinsbourne, M. (1978).Asymmetrical function of the brain Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Klatt, D. H. (1980). Software for a cascade/parallel format synthesizer.Journal of the Acoustical Society of America,67, 971–995.

    Article  Google Scholar 

  • Kolers, P. A., &Ostry, D. J.(1974). Time course of loss of information regarding pattern analyzing operations.Journal of Verbal Learning & Verbal Behavior,13, 599–612.

    Article  Google Scholar 

  • Kolers, P. A., &Roediger, H. L., III. (1984) Procedures of mind.Journal of Verbal Learning & Verbal Behavior,23, 425–449.

    Article  Google Scholar 

  • Koiers, P. A., &Smythe, W. E. (1984). Symbol manipulation: Alternatives to the computational view of mind.Journal of Verbal Learning & Verbal Behavior.23, 289–314.

    Article  Google Scholar 

  • Kosslyn, S. M. (1983)Ghosts in the mind’s machine Creating and using images in the brain. New York: Norton.

    Google Scholar 

  • Krech, D. (1955). Discussion: Theory and reductionism.Psychological Review,62, 229–231.

    Article  PubMed  Google Scholar 

  • Kuhn, T. S. (1962).The structure of scientific revolutions. Chicago: University of Chicago Press.

    Google Scholar 

  • Lesgold, A. M. (1984). Human skill in a computerized society: Complex skills and their acquisition.Behavior Research Methods & Instrumentation,16, 79–87.

    Google Scholar 

  • Loftus, G. (1985). Johannes Kepler’s computer simulation of the universe Some remarks about theory in psychology.Behavior Research Methods. Instruments, & Computers,17, 149–156.

    Google Scholar 

  • Luce, R. D. (1959).Individual choice behavior. New York: Wiley.

    Google Scholar 

  • MacDonald, J., &McGurk, H. (1978) Visual influences on speech perception processes.Perception & Psychophysics,24, 253–257.

    Google Scholar 

  • MacKay, D. M. (1984) Mind talk and brain talk. In M. S. Gazzaniga, (Ed.),Handbook of cognitive neuroscience. (pp. 293–317) New York: Plenum Press.

    Google Scholar 

  • Marr, D. (1982).Vision: A computational investigation into the human representation and processing of visual information. San Francisco: Freeman.

    Google Scholar 

  • Massaro, D. W. (1975a)Experimental psychology and information processing. Chicago: Rand-McNally.

    Google Scholar 

  • Massaro, D. W. (Ed.). (1975b). Understanding language.An information processing analysis of speech perception, reading and psycholinguistics, New York; Academic Press.

    Google Scholar 

  • Massaro, D. W. (1984a) Building and testing models of reading processes. In P. D. Pearson (Ed),Handbook of reading research, (pp. 111–146) New York: Longman.

    Google Scholar 

  • Massaro, D. W. (1984b). Children’s perception of visual and auditory speech.Child Development,55, 1777–1788.

    Article  PubMed  Google Scholar 

  • Massaro, D. W. (1985). Attention and perception An information-integration perspective.Acta Psychologica,60, 211–243.

    Article  PubMed  Google Scholar 

  • Massaro, D. W. (in press a). Information-processing theory and strong inference: A paradigm for psychological inquiry. In H. Heuer & A. F. Sanders (Eds.),Perspectives on perception and action. Hillsdale, NJ: Erlbaum.

  • Massaro, D. W. (in press b). Speech perception by ear and eye. In B. Dodd & R. Campbell (Eds.),Hearing by eye: Experimental studies in the psychology of lip reading. Hillsdale, NJ: Erlbaum.

  • Massaro, D. W., &Cohen, M. M. (1983). Evaluation and integration of visual and auditory information in speech perception.Journal of Experimental Psychology: Human Perception & Performance,9, 753–771.

    Article  Google Scholar 

  • McClelland, J. L., &Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: Part I. An account of basic findings.Psychological Review,88, 375–407.

    Article  Google Scholar 

  • McCorduck, P. (1979).Machines who think. New York: Freeman.

    Google Scholar 

  • McGurk, H., &MacDonald, J. (1976). Hearing lips and seeing voices.Nature,264, 746–748.

    Article  PubMed  Google Scholar 

  • Mehler, J., Morton, J., Jusczyk, P. W. (1984). On reducing language to biology.Cognitive Neuropsychology,1, 83–116.

    Article  Google Scholar 

  • Mervis, C. B., &Rosch, E. (1981). Categorization of natural objects.Annual Review of Psychology,32, 89–115.

    Article  Google Scholar 

  • Miller, G. A. (1951).Language and communication. New York: McGraw-Hill.

    Book  Google Scholar 

  • Miller, G. A. (1953) What is information measurement?.American Psychologist,8, 3–11.

    Article  Google Scholar 

  • Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information.Psychological Review,63, 81–97.

    Article  PubMed  Google Scholar 

  • Miller, G. A. (1981).Language and speech. San Francisco: Freeman.

    Google Scholar 

  • Miller, J. (1982). Divided attention: Evidence for coactivation with redundant signals.Cognitive Psychology,14, 247–279.

    Article  PubMed  Google Scholar 

  • Minsky, M., &Papert, S. (1968)Perceptrons. Cambridge, MA: MIT Press.

    Google Scholar 

  • Navon, D. (1984). Resources-A theoretical soup stone?.Psychological Review,91, 216–234.

    Article  Google Scholar 

  • Neisser, U. (1967).Cognitive Psychology. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Neumann, O. (in press). Beyond capacity: A functional view of attention. In H. Heuer & A. F. Sanders (Eds.),Perspectives on perception and action. Hillsdale, NJ: Erlbaum.

  • Newell, A., &Simon, H. A. (1956). The logic theory machine.IRE Transactions on Information Theory,IT-2(3), 61–79.

    Article  Google Scholar 

  • Newell, A., &Simon, H. A. (1972).Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Norman, D. A., &Bobrow, D. G.(1975). On data-limited and resource-limited processes.Cognitive Psychology,7, 44–64.

    Article  Google Scholar 

  • Oden, G. C. (1984). Dependence, independence, and emergence of word features.Journal of Experimental Psychology: Human Perception & Performance,10, 394–405.

    Article  Google Scholar 

  • Okita, T., Wijers, A. A., Mulder, G., &Mulder, L. J. M. (1985). Memory search and visual spatial attention: An event-related brain potential analysis.Acta Psychologica,60, 263–292.

    Article  PubMed  Google Scholar 

  • Owens, D. A. (1985). [Comment on P. Bieri’s (1985) lecture]. Unpublished comment

  • Pattee, H. H. (1974). Discrete and continuous processes in computers and brains. In M. Conrad, W. Guttinger, & M. D. Cin, (Eds.),Physics and mathematics of the nervous system (pp. 128–148). New York: Springer-Verlag.

    Google Scholar 

  • Platt, J. R. (1964). Strong inference.Science,146, 347–353.

    Article  PubMed  Google Scholar 

  • Pohl, I., &Shaw, A. (1981).The nature of computation. An introduction to computer science. Rockville, MD: Computer Science Press.

    Google Scholar 

  • Popper, K. (1959).The logic of scientific discovery. New York: Basic Books.

    Google Scholar 

  • Pylyshyn, Z. N. (1984).Computation and cognition Towardafoundation for cognitive science. Cambridge, MA: MIT Press.

    Google Scholar 

  • Raab, D. H. (1962). Statistical facilitation of simple reaction times.Transactions of the New York Academy of Sciences,24, 574–490.

    PubMed  Google Scholar 

  • Raphael, B. (1976)The thinking computer: Mind inside matter. San Francisco: Freeman.

    Google Scholar 

  • Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain.Psychological Review,65, 386–407.

    Article  PubMed  Google Scholar 

  • Schweickeri, R., &Boggs, G. J. (1984). Models of central capacity and concurrency.Journal of Mathematical Psychology,28, 223–281.

    Article  Google Scholar 

  • Searle, J. (1984).Minds, brains and science. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Selfridge, O. G. (1959). Pandemonium: A paradigm for learning. InMechanization of thought processes. London: Her Majesty’s Stationery Office.

    Google Scholar 

  • Shannon, C. E. (1948). The mathematical theory of communication.Bell System Technical Journal,27, 379–423, 623–658.

    Google Scholar 

  • Simon, H. A. (1969).Sciences of the artificial. Cambridge, MA: MIT Press.

    Google Scholar 

  • Smith, F. (1971).Understanding reading. New York: Holt, Rinehart & Winston.

    Google Scholar 

  • Toulmin, S. (1972).Human understanding: Vol. I. The collective use and evolution of concepts. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Trask, M. (1971).The story of cybernetics. London: Institute of Contemporary Arts, Studio Vista Ltd.

    Google Scholar 

  • Walden, B. E., Prosek, R. A., Montgomery, A. A., Scherr, C. K., &Jones, C. J. (1977). Effects of training on the visual recognition of consonants.Journal of Speech & Hearing Research,20, 130–145.

    Google Scholar 

  • Wickelgren, W. A., &Norman, D. A. (1966). Strength models and serial position in short-term recognition memory.Journal of Mathematical Psychology,3, 316–347.

    Article  Google Scholar 

  • Wiener, N. (1948).Cybernetics. Cambridge: MIT Press.

    Google Scholar 

  • Williams, J. M. (1978a). Antique mechanical computers: Part 1. Early automata.Byte, July, 48–58.

  • Williams, J. M. (1978b). Antique mechanical Computers: Part 2 18th and 19th century mechanical marvels.Byte, August, 96&2-107.

  • Winston, P. H. (1977).Artificial intelligence. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets.Information & Control,8, 338–353.

    Article  Google Scholar 

  • Zadeh, L. A. (1984). Making computers think like people.IEEE Spectrum,21, 26–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Program in Experimental Psychology, University of California, 95064, Santa Cruz, CA

    Dominic W. Massaro

Authors

  1. Dominic W. Massaro

    View author publications

    You can also search for this author in PubMed Google Scholar

Additional information

Ray Gibbs provided productive discussions and helpful comments on an earlier version of the paper. The writing of the paper and the research reported herein were supported, in part, by NINCDS Grant 20314 from the Public Health Service and Grant BNS-83-15192 from the National Science Foundation.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Massaro, D.W. The computer as a metaphor for psychological inquiry: Considerations and recommendations. Behavior Research Methods, Instruments, & Computers 18, 73–92 (1986). https://doi.org/10.3758/BF03201006

Which cognitive theory uses the analogy of the mind like a computer?

The “mind as computer” metaphor is presently formalized as the computational theory of mind or computationalism,1 the view “that intelligent behavior is causally explained by computations performed by the agent's cognitive system (or brain).”2 Simply stated, as applied to humans, it holds that cognition in the brain is ...

Why is the computer likened to the human brain?

While conventional computers run commands sequentially, constantly moving data packets back and forth from the memory to the processor, neuromorphic computers process and store data largely at the same time, making them both faster and extremely energy efficient, just like the human brain.

How is a computer compared to human cognitive functioning?

Computers are said to work much like the human brain in that both systems access and configure information in stages. First, input is received, next the input is processed, then the information is stored to memory, it is then configured, and lastly output is created.

How is the human mind like a computer psychology?

The computational theory of mind, in essence, says that your brain works like a computer. That is, it takes input from the outside world, then performs algorithms to produce output in the form of mental state or action.