Cách bấm máy tính tiệm cận ngang

Bài toán tìm tiệm cận hàm số sau: Số tiệm cận đứng của đồ thị hàm số [latex]\frac{\sqrt{x+9}-3}{{{x}^{2}}+x}[/latex] là:

[Trích câu 18 – Mã đề 101 đề thi THPTQG 2018]

 Lời giải tự luận

Ta nhắc lại về định nghĩa tiệm cận đứng, đường thẳng $latex x={{x}_{0}}$ được gọi là đường tiệm cận đứng của đồ thị hàm số $latex y=f[x]$ nếu ít nhất một trong các điều kiện sau được thoả mãn:

$latex \underset{x\to x_{0}^{-}}{\mathop{\lim }}\,f[x]=+\infty \\ \underset{x\to x_{0}^{-}}{\mathop{\lim }}\,f[x]=-\infty \\ \underset{x\to x_{0}^{+}}{\mathop{\lim }}\,f[x]=+\infty \\ \underset{x\to x_{0}^{+}}{\mathop{\lim }}\,f[x]=-\infty$

Quay trở lại bài toán trên, ta có tập xác định của $latex f[x]$ là: $latex D=[-9;+\infty ]\backslash \{0;1\}$.

Ta có: $latex \underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,\dfrac{\sqrt{x+9}-3}{{{x}^{2}}+x}=+\infty$ nên $latex x=-1$ là tiệm cận đứng

Mặc khác:

$latex \begin{align}   & \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{x+9}-3}{{{x}^{2}}+x} \\  & =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left[ \sqrt{x+9}-3 \right]\left[ \sqrt{x+9}+3 \right]}{\left[ {{x}^{2}}+x \right]\left[ \sqrt{x+9}+3 \right]} \\  & =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x+9-9}{\left[ {{x}^{2}}+x \right]\left[ \sqrt{x+9}+3 \right]} \\  & =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{\left[ x+1 \right]\left[ \sqrt{x+9}+3 \right]} \\  & =\dfrac{1}{6} \\ \end{align}$

Nên $latex x=0$ không phải là tiệm cận đứng.

Vậy chỉ có 1 đường tiệm cận đứng do đó ta chọn đáp án D.

Chúng ta có thể xác định nhanh giới hạn của $latex f[x]$ bằng máy tính cầm tay CASIO fx 580VNX như sau:

Bước 1: Nhập biểu thức $latex f[x]$

  • Cách bấm: as[+9$p3R[d+[
  • Máy tính hiển thị:
Nhập biểu thức như trên

Bước 2: Để tính $latex \underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,\frac{\sqrt{x+9}-3}{{{x}^{2}}+x}$ ta có thể CALC tại giá trị $latex x=-1+{{10}^{-6}}\approx -1$

  • Cách bấm: as[+9$p3R[d+[==
  • Máy tính hiển thị:

Kết quả CALC

Từ kết quả ta dự đoán $latex \underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,\dfrac{\sqrt{x+9}-3}{{{x}^{2}}+x}=+\infty$ nên $latex x=-1$ là một tiệm cận đứng.

Bước 3: Để tính $latex \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{x+9}-3}{{{x}^{2}}+x}$ ta có thể CALC tại giá trị $latex x=0+{{10}^{-6}}\approx 0$

  • Cách bấm: !r0+10Kp6==
  • Máy tính hiển thị:

Kết quả CALC

Từ kết quả ta dự đoán $latex \underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,\dfrac{\sqrt{x+9}-3}{{{x}^{2}}+x}=0,1666649544\approx \dfrac{1}{6}$ nên $latex x=0$ không là một tiệm cận đứng.

Các bạn tham khảo đồ thị của hàm số và đường tiệm cận đứng qua hình sau:

Đồ thị hàm số và đường tiệm cận

Trên đây diendanmaytinhcamtay.vn đã giới thiệu cho các bạn cách tìm tiệm cận đứng để giải bài toán tìm tiệm cận hàm số trong đề thi THPTQG 2018. Truy cập diễn đàn mỗi ngày để xem thêm nhiều bài toán ứng dụng hay về cách sử dụng máy tính cầm tay CASIO fx 580VNX.

Cách bấm máy tính Casio tìm giới hạn của hàm số tại một điểm. Cách bấm máy tính Casio tìm đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số

Máy tính Casio là vật không thể thiếu mỗi khi bước vào phòng thi đúng không nào? Nhưng làm sao để vận dụng được tối đa công dụng của nó mới là vấn đề đáng quan tâm nhất. Vì thế, trong bài viết ngày hôm nay, HocThatGioi sẽ giới thiệu cho các bạn phương pháp tìm đường tiệm cận của đồ thị hàm số bằng máy tính Casio cực nhanh và hữu ích. Cùng bắt đầu ngay nào!

Trước tiên ta cần phải biết cách bấm máy tìm giới hạn của hàm số tại một điểm trước đã, để làm được việc này, ta thực hiện từng bước như sau:

  1. Nhập hàm số cần tính giới hạn vào máy tính
  2. Bấm phím CALC trên máy tính
  3. Nhập giá trị tại điểm cần tính giới hạn
  4. Kết quả xuất ra trên máy tính chính là giới hạn của hàm số tại điểm đó

Lưu ý:

  • Muốn tìm giới hạn của hàm số tại +\infty, thông thường ta sẽ cho điểm cần tìm là một số thật lớn [ví dụ 10^6], ngược lại giá trị của hàm số tại -\infty
  • Muốn tìm giới hạn của hàm số tại x_0^+, ta sẽ cho điểm cần tìm là x_0+0.0001, tại x_0^-x_0-0.0001.

Có những bài toán ta chỉ cần nhìn qua là có thể biết ngay nó có bao nhiêu đường tiệm cận đứng, bao nhiêu đường tiệm cận ngang. Tuy nhiên, đối với các hàm số phức tạp thì điều đó là không dễ dàng gì. Vì thế việc bấm máy tính Casio sẽ tiết kiệm cho các bạn rất nhiều thời gian trong phòng thi đấy! Trước tiên, để hiểu được cách bấm thì các bạn cần phải nắm rõ các kiến thức cơ bản trước đã.

==> Xem thêm về lý thuyết đường tiệm cận cơ bản

Để tìm đường tiệm cận đứng bằng máy tính Casio, ta thực hiện các bước sau đây:

  1. Tìm nghiệm dưới mẫu.
  2. Đối với mỗi nghiệm x_0, ta sẽ tìm giới hạn lần lượt tại x_0^+x_0^- theo các bước mà mình mới giới thiệu ở trên.
  3. Nếu các giới hạn vừa tìm được tiến tới \infty thì x=x_0 là đường tiệm cận đứng của đồ thị hàm số, ngược lại thì không phải.
  4. Kết luận.

Thật nhanh chóng đúng không nào!

Để tìm đường tiệm cận ngang bằng máy tính Casio, ta thực hiện các bước sau:

  1. Tìm giới hạn của hàm số đó ở +\infty-\infty theo các bước mà mình mới giới thiệu ở trên.
  2. Nếu giới hạn đó đến hằng số y_0 thì y=y_0 là đường tiệm cận ngang của đồ thị hàm số.
  3. Kết luận.

Nếu các bạn thành thạo được cách bấm máy tính Casio thì HocThatGioi nghĩ sẽ làm các câu hỏi này đề thi rất dễ dàng và nhanh chóng hơn rất nhiều đấy!

Cảm ơn các bạn đã theo dõi bài viết của HocThatGioi về Cách tìm đường tiệm cận của đồ thị hàm số bằng máy tính Casio cực nhanh. Nếu các bạn thấy hay và bổ ích, hãy chia sẻ cho bạn bè của mình để cùng nhau học thật giỏi nhá. Đừng quên để lại 1 like, 1 cmt để tạo động lực cho HocThatGioi và giúp HocThatGioi ngày càng phát triển hơn nhé! Chúc các bạn học thật tốt!

Bài viết khác liên quan đến Tổng hợp các kiến thức về đường tiệm cận của đồ thị hàm số cực hay và chi tiết

Thuvienhoclieu.Com xin giới thiệu đến các bạn phương pháp tìm tiệm cận ngang của đồ thị hàm số bằng máy tính casio giúp các bạn xác định được tiệm cận ngang của đồ thị có hàm số phức tạp. Các bạn hãy xem video nhé.


TRẮC NGHIỆM TÌM TIỆM CẬN ĐỨNG CỦA ĐỒ THỊ HÀM SỐ BẰNG MÁY TÍNH CASIO

Định nghĩa: Đường thẳng $y = {y_0}$ được gọi là tiệm cận ngang của đồ thị hàm số $y = f[x]$nếu thỏa một trong hai điều kiện sau:

  1. $\mathop {\lim }\limits_{x \to + \infty } f[x] = {y_0}$
  2. $\mathop {\lim }\limits_{x \to – \infty } f[x] = {y_0}$

Phương pháp:

Bước 2.

+ Tính $\mathop {\lim }\limits_{x \to  + \infty } f[x] = {y_0}$ bằng máy tính casio.  Nhập $f[x]$-> nhấn CALC -> chọn $x = {10^5}$.

+ Tính $\mathop {\lim }\limits_{x \to  – \infty } f[x] = {y_0}$ bằng máy tính casio.  Nhập $f[x]$-> nhấn CALC -> chọn $x =  – {10^5}$.

Kết quả có 4 dạng sau:

+ Một số dương rất lớn, suy ra giới hạn bằng $ + \infty \,$.

+ Một số âm rất nhỏ, suy ra giới hạn bằng $ – \infty \,$.

+ Một số có dạng ${\rm{A}}{.10^{ – n}}$, suy ra giới hạn bằng $0$.

+ Một số có dạng bình thường là B. Suy ra giới hạn bằng B hoặc gần bằng B.

Câu 1. Tìm các tiệm cận ngang của đồ thị hàm số $y = \frac{{4x – 3}}{{2x – 5}}$

Giải:

+Tính $\mathop {\lim }\limits_{x \to  + \infty } \frac{{4x – 3}}{{2x – 5}} = 2$$ \Rightarrow y = 2$là tiệm cận ngang

+ Tính $\mathop {\lim }\limits_{x \to  – \infty } \frac{{4x – 3}}{{2x – 5}} = 2$$ \Rightarrow y = 2$là tiệm cận ngang

Vậy đồ thị hàm số có 1 tiệm cận ngang là y = 2

Câu 2. Tìm các tiệm cận ngang của đồ thị hàm số $y = \frac{{4x – 3}}{{6 – 5x}}$

Giải:

+Tính $\mathop {\lim }\limits_{x \to  + \infty } \frac{{4x – 3}}{{6 – 5x}} =  – \frac{4}{5}$$ \Rightarrow y =  – \frac{4}{5}$ là tiệm cận ngang

+Tính $\mathop {\lim }\limits_{x \to  – \infty } \frac{{4x – 3}}{{6 – 5x}} =  – \frac{4}{5}$$ \Rightarrow y =  – \frac{4}{5}$ là tiệm cận ngang

Vậy đồ thị hàm số có 1 tiệm cận ngang là $y =  – \frac{4}{5}$

Câu 3. Tìm các tiệm cận ngang của đồ thị hàm số $y = \frac{{4{x^2} – 3}}{{1 + 5{x^3}}}$

Giải:

+Tính $\mathop {\lim }\limits_{x \to  + \infty } \frac{{4{x^2} – 3}}{{1 + 5{x^3}}} = 0$$ \Rightarrow y = 0$ là tiệm cận ngang

+Tính $\mathop {\lim }\limits_{x \to  – \infty } \frac{{4{x^2} – 3}}{{1 + 5{x^3}}} = 0$$ \Rightarrow y = 0$ là tiệm cận ngang

Vậy đồ thị hàm số có 1 tiệm cận ngang là $y = 0$

Câu 4. Tìm các tiệm cận ngang của đồ thị hàm số $y = \frac{{4{x^2} – 3}}{{1 + 5x}}$

Giải:

+Tính $\mathop {\lim }\limits_{x \to  + \infty } \frac{{4{x^2} – 3}}{{1 + 5x}} =  + \infty $$ \Rightarrow $ Đồ thị không có tiệm cận ngang

+Tính $\mathop {\lim }\limits_{x \to  – \infty } \frac{{4{x^2} – 3}}{{1 + 5x}} =  – \infty $$ \Rightarrow $ Đồ thị không có tiệm cận ngang

Vậy đồ thị hàm số không có  tiệm cận ngang .

Câu 5. Tìm các tiệm cận ngang của đồ thị hàm số $y = x – \sqrt {{x^2} + x + 5} $

Giải:

+Tính $\mathop {\lim }\limits_{x \to  + \infty } \left[ {x – \sqrt {{x^2} + x + 5} } \right] =  – \frac{1}{2}$$ \Rightarrow y =  – \frac{1}{2}$ là tiệm cận ngang

+Tính $\mathop {\lim }\limits_{x \to  – \infty } \left[ {x – \sqrt {{x^2} + x + 5} } \right] =  – \frac{1}{2}$$ \Rightarrow y =  – \frac{1}{2}$ là tiệm cận ngang

Vậy đồ thị hàm số có 1 tiệm cận ngang là $y =  – \frac{1}{2}$

Câu 6. Tìm các tiệm cận ngang của đồ thị hàm số $y = \frac{{2x – 3}}{{x + \sqrt {{x^2} + x – 5} }}$

Giải:

+Tính $\mathop {\lim }\limits_{x \to  + \infty } \frac{{2x – 3}}{{x + \sqrt {{x^2} + x – 5} }} = 1$$ \Rightarrow y = 1$ là tiệm cận ngang

+Tính $\mathop {\lim }\limits_{x \to  – \infty } \frac{{2x – 3}}{{x + \sqrt {{x^2} + x – 5} }} =  + \infty $$ \Rightarrow $ trong trường hợp này không có tiệm cận ngang

Vậy đồ thị hàm số có 1 tiệm cận ngang là $y = 1$

Câu 7. Tìm các tiệm cận ngang của đồ thị hàm số $y = \frac{{2x – 7}}{{\sqrt {{x^2} + 1} }}$

Giải:

+Tính $\mathop {\lim }\limits_{x \to  + \infty } \frac{{2x – 7}}{{\sqrt {{x^2} + 1} }} = 2$$ \Rightarrow y = 2$ là tiệm cận ngang

+Tính $\mathop {\lim }\limits_{x \to  – \infty } \frac{{2x – 7}}{{\sqrt {{x^2} + 1} }} =  – 2$$ \Rightarrow y =  – 2$ là tiệm cận ngang

Vậy đồ thị hàm số có hai tiệm cận ngang là $y = 2$ và $y =  – 2$

Câu 8. Tìm các tiệm cận ngang của đồ thị hàm số $y = \frac{{\left| {8{x^2} + 3x} \right|}}{{1 – 2x}}$

Giải:

+Tính $\mathop {\lim }\limits_{x \to  + \infty } \frac{{\left| {8{x^2} + 3x} \right|}}{{1 – 2{x^2}}} =  – 4$$ \Rightarrow y =  – 4$ là tiệm cận ngang

+Tính $\mathop {\lim }\limits_{x \to  – \infty } \frac{{\left| {8{x^2} + 3x} \right|}}{{1 – 2{x^2}}} = 4$$ \Rightarrow y = 4$ là tiệm cận ngang

Vậy đồ thị hàm số có hai tiệm cận ngang là $y =  – 4$ và $y = 4$

Câu 9. Tìm số tiệm cận ngang của đồ thị hàm số $y = \frac{{x\sqrt {{x^2} + 1} }}{{\left| {{x^2} – 3} \right|}}$

Giải:

+Tính $\mathop {\lim }\limits_{x \to  + \infty } \frac{{x\sqrt {{x^2} + 1} }}{{\left| {{x^2} – 3} \right|}} = 1$$ \Rightarrow y = 1$ là tiệm cận ngang

+Tính $\mathop {\lim }\limits_{x \to  – \infty } \frac{{x\sqrt {{x^2} + 1} }}{{\left| {{x^2} – 3} \right|}} =  – 1$$ \Rightarrow y =  – 1$ là tiệm cận ngang

Vậy đồ thị hàm số có hai tiệm cận ngang là $y =  – 1$ và $y = 1$

Vậy ta chọn phương án C

Câu 10. Tìm số tiệm cận ngang của đồ thị hàm số $y = 2x + \sqrt {4{x^2} + 1} $

Giải:

+Tính $\mathop {\lim }\limits_{x \to  + \infty } \left[ {2x + \sqrt {4{x^2} + 1} } \right] =  + \infty $$ \Rightarrow $trong trường hợp này không có tiệm cận ngang

+Tính $\mathop {\lim }\limits_{x \to  – \infty } \left[ {2x + \sqrt {4{x^2} + 1} } \right] = 0$$ \Rightarrow y =  – 1$ là tiệm cận ngang

Suy ra đồ thị hàm số có một tiệm cận ngang là $y = 0$

Vậy ta chọn phương án B.

Câu 11. Tìm số tiệm cận ngang của đồ thị hàm số $y = x – \sqrt {2{x^2} + 5} $

Giải:

+Tính $\mathop {\lim }\limits_{x \to  + \infty } \left[ {x – \sqrt {2{x^2} + 5} } \right] =  – \infty $$ \Rightarrow $trong trường hợp này không có tiệm cận ngang

+Tính $\mathop {\lim }\limits_{x \to  – \infty } \left[ {x – \sqrt {2{x^2} + 5} } \right] =  + \infty $$ \Rightarrow $trong trường hợp này không có tiệm cận ngang

Suy ra đồ thị hàm số không có cận ngang

Vậy ta chọn phương án A

Video liên quan

Chủ Đề