Lập được bao nhiêu số có 4 chữ số khác nhau chia hết cho 3

Đáp án : A

Gọi số có bốn chữ số  là .

+ ta tính số các số có 4 chữ số khác nhau :

Chọn a có 4 cách; chọn b có 4 cách; chọn c có 3 cách; chọn d có 2 cách.

Theo quy tắc nhân có: 4.4.3.2=96 số.

+ ta tính số các số có 4 chữ số khác nhau và chia hết cho 10.

Do x chia hết cho 10 nên d=0. Khi đó có 4 cách chọn a; 3 cách chọn b và 2 cách chọn c.

Theo quy tắc nhân có : 1.4.3.2=24 số

Suy ra số các số có 4 chữ số khác nhau thỏa mãn đầu bài là:

96-24=72

a] Mỗi cách lập một số có 3 chữ số khác nhau là việc lấy 3 phần tử từ tập chữ số: 1; 2; 3; 4; 5; 6, rồi sắp xếp chúng, nên mỗi cách lập số là một chỉnh hợp chập 3 của 6.

Vậy có \[A_6^3\] = 120 số có ba chữ số khác nhau thỏa mãn.

b] Số chia hết cho 3 thì tổng các chữ số của số đó phải chia hết cho 3.

Ta có các bộ ba có tổng chia hết cho 3 là: [1; 2; 3], [1; 2; 6], [1; 3; 5], [1; 5; 6], [2; 3; 4], [2; 4; 6], [3; 4; 5], [4; 5; 6].

Mỗi bộ ba có 3! cách sắp xếp để được một số chia hết cho 3.

Vậy số các số có 3 chữ số khác nhau được lập từ các chữ số: 1; 2; 3; 4; 5; 6, chia hết cho 3 là: 8 . 3! = 48 [số].

Có bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau lập từ các chữ số 1,2,3,4,5,6,7,8,9 .Chọn ngẫu nhiên 1 số từ tập S .Tính xác suất để số được chọn chia hết cho 3

@chanhquocnghiem:
Đây cũng là 1 minh chứng cho bài toán được giải quyết tốt khá là nhẹ nhàng, ngắn gọn khi tiếp cận bằng pp "mộc mạc, cổ điển " quen thuộc, trong khi đó nếu dùng hàm sinh thì bài giải khá dài, cồng kềnh và phải vận dụng thêm một ít kiến thức toán học khác.
a/ Cách tiếp cận "chân phương ", truyền thống:[Mời bạn gì đó nên xem phần này nhé ] theo mình thì bạn phân thành 3 tập :$A_0=\left \{ 3,6,9 \right \},A_1=\left \{ 1,4,7 \right \},A_2=\left \{ 2,5,8 \right \} $. Sau đó bạn tính số tập con có 4 phần tử mà tổng các phần tử chia hết cho 3. Tdụ : số cách chọn 2 ptử thuộc $A_0$ + 1 ptử thuộc $A_1$ + 1 ptử thuộc $A_2$ là : $C^{1}_{3}.C^{1}_{3}.C^{1}_{3}=27$..vv... Cứ tính như vậy, bạn sẽ có số tập con có 4 ptử và tổng 4 ptử chia hết cho 3 là $42$. Thực hiện hoán vị 4 ptử trong mỗi tập, bạn sẽ được số các số thỏa yêu cầu đề bài là $4!42$. Từ đây bạn dễ dàng tính được XS mà đề bài yêu cầu.
b/ Tiếp cận bằng hàm sinh :
Ta lập hàm sinh $G[x,y]$, trong đó $x$ mang thông tin là tổng các phần tử, $y$ mang thông tin là số phần tử. Ta có :
$$G[x,y]=[1+xy][1+x^2y][1+x^3y]...[1+x^9y]$$
Khai triển dưới dạng tổng thì:
$G[x,y]=\sum_{n,k}^{} a_{n,k}x^ny^k$
Gọi $\omega ^{2\pi i/3} $ là một căn bậc 3 của đơn vị và $N$ là số tập con $ k$ phần tử và tổng k phần tử trong tập con này là $n$ thì :
$N=\sum_{k\geq 0, 3\mid n}^{}a_{n,k}y^k=\frac{G[1, y] +G[\omega, y]+G[\omega^2, y] }{3}$
Ta có :
$G[1,y]=[1+y]^9$
$G[\omega^j,y]=[1+\omega^jy][1+\omega^{2j}y]...[1+\omega^{9j}y]=\left [ [1+\omega y][1+\omega^{2}y] [1+\omega^{3}y] \right ]^3, \forall j\geq 1$
Dễ thấy phương trình $y^3+1=0$ có nghiệm là $-e^{-1}, -e^{-2}, -e^{-3} $ nên :
$[1+\omega y][1+\omega^{2}y] [1+\omega^{3}y]=1+y^3$
Suy ra :
$N=\sum_{k\geq 0, 3\mid n}^{}a_{n,k}y^k=\frac{[1+y]^9+2[1+y^3]^3}{3}$
Với $k=4$ ta có :
$N=\frac{\binom{9}{4}+2[1+y^3]^3}{3}=\frac{\binom{9}{4}}{3}=\frac{126}{3}=42$
Suy ra số các số thỏa yêu cầu đề bài là $\boxed {4!42}$
Chú thích :
- Số hạng thứ hai trong tử số của $N$ bằng $0$ vì sau khi khai triển số hạng này thì trong khai triển không có số hạng nào chứa $y^4$.

PS: Nhân đây, cho phép em hỏi thăm anh Chanhquocnghiem : Lâu rồi không thấy anh viết bài trên forum, anh mạnh khỏe chứ?

Bài viết đã được chỉnh sửa nội dung bởi Nobodyv3: 15-08-2022 - 06:19

Cho tập hợp số : \[A = \left\{ {0,1,2,3,4,5,6} \right\}\].Hỏi có thể thành lập bao nhiêu số có 4 chữ số khác nhau và chia hết cho 3.

  • A. 114
  • B. 144
  • C. 146
  • D. 148

Lời giải tham khảo:

Đáp án đúng: B

Ta có một số chia hết cho 3 khi và chỉ khi tổng các chữ số chia hết cho 3. Trong tập A có các tập con các chữ số chia hết cho 3 là \[\{ 0,1,2,3\} ,\] \[{\rm{\{ 0,1,2,6\} }}\], \[{\rm{\{ 0,2,3,4\} }}\], \[{\rm{\{ 0,3,4,5\} }}\], \[{\rm{\{ 1,2,4,5\} }}\], \[{\rm{\{ 1,2,3,6\} }}\], \[\left\{ {1,3,5,6} \right\}\].

Chủ Đề